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known ::: ~ except
- 1 1

‘‘for a parameter 0. For simultaneous M-estimates,4— ~~show that

-~ -4 1 
-

(0-0) O(N ), and’find the limit distribution.\P~ 
$_

~~)~ For the special

case of least squares estimation , this limit distribution is the same as the

limit distribution of the weighted least squares~ysing the weights,

w.= (Var Z~Y
1
~~and in general the distribution is that of a “~eighted

M-estimate’-’~using these weights. Moreover, the covariance matrix of the

limit distribution can be consistently estimated, so large sample confidence

ellipsoids and tests of hypotheses ooneerning-~--~ are feasible. -
.1 -
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1. Introduction. Consider the linear model

Y . = ~ . + a. er r 1 1  i i  -

and

C1’ 3, for i =

where e1,. . .,eN are i.i.d. with distribution F,Ci(=C .N) are known elements in

R~, B is a vector parameter in R~, and al,...,aN are constants, which express

the possible heteroscedasticity of the model . If F were a normal distribution

function and the o~ were known then the minimum variance unbiased estimator
A

of ~ would be the weighted least squares estimator ~~, which is the solution to

N A

(1.1) ~ ~(C~~-~~ ~~)/a.) = minimum,
i=l

where p(x) = x2 . If F has heavy tails compared with the Gaussian distribution

or gross errors are possibly present in the data, then one may wish to replace

p(x) = x2 with a function such that ‘~‘ = p’ is bounded. Such estimators have

been called M-estimators by Huber (1964, 1973), because they are generali-

zations of maximum likelihood estimators. If the a
~ 
are not known it may

still be possible to estimate them. For examplt~, Fuller and Rao (1978) con-

sider the case where the occur in groups for which a
~ 

is constant, and

Box and Hill (1974) assume that

(1.2) a~(O) = a. =

for an unknown parameter 0 and estimate both 0 and B by Bayesian methods.

Both Fuller and Rao and Box and Hill treat only Gaussian errors.

Anscombe (1961) has proposed tests of heteroscedasticity, and Bickel

(1978) has developed robust versions of these, but neither has considered 0

modifying the estimate of if the null hypothesis of homoscedasticity is rejected.

In many empirica l studies, one finds that the dispersion of the residuals

-- 
- ., ~~I



~~~
- -

~~~~~~~~
‘
~~~~~~~~~~~~

—-- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~

page 3

increases with the magn itude of the fitted values , so that it is reasonable

to assume that = a ( I T ~ I )  for some nondecreas ing function a. While the

power family (1.2) may be sufficiently rich to model this phenomenon (although

it has obvious difficulties in practice when r j = 0), we prefer to study the

general class ,

(1.3) a. = exp(hCr.)T ~

where 0 is a parameter in and h is a known function from to

Notice that choosing h 1( r . )  E 1 (h1 is the first coordinate of h), exp (0 1)

becomes a scale parameter ; as a result, our estimate of B will be scale

equivariant regardless of the choice of p. Two choices of h which have no

practical difficulties when 0 are h(t) = (1, log(1+~T~)) and h(T) = (l ,tTI).

To motivate our method , suppose F is standard normal so that the log-

likelihood is N 2 2L(Y; 0 ,8) = - ~ (log 2ir + log a
~ 

+ ((Y
~

_ T
~~

)/a
~

) }
i=l

If 0 were known, (1.1) would yield the MLE for B, while if B were known, the

MLE of 0 would solve

N
(1.4) ~ {( ( Y . -T.)/a.(0))2 - 1} h(t.) 0.

i=1 1 1

A reasonable computational alternative to solving (1.1) and (1.4) simultaneous-

ly might consist of (i) obtaining a preliminary estimate of B (such as the least

squares estimate) and hence estimates for 
~~~~~~~ 

(ii) solve (1.4) using

these estimates, thus obtaining estimates of ~~~~~~~~ which (iii) are used

to solve (1.1).

We thus suggest the following procedure. First, a preliminary estimate

of B is calculated and assumed to satisfy

(1.5) B) —

L ~~~~~~~~~~~~~~ -
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‘
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J Examples of estimates satisfying (1.5) are given in Section 5. At the second

stage , define t~ = ç~ ~~ and obtain robustified estimates of 0 by solving the

I’ following analogue of (1.4):

N 2 - T A
(1.6) ~ 

{
~
, (( Y .-t1) exp(-h(t.) 0)) - ~

} h( t1) = 0,
i=l

where 
~L’ 

is monotone nondecreasing and E = Eij 2 (~ ),  the expectation being taken

under the standard normal distribution . Clearly, ~~x) = x l eads to (1.4) .

— At the third stage, we now solve a robust version of (1.1):

N TA  A
(1.7) ~ ~pUY.-C. )/a1) ~ii 

= 0,
1=1

where
T A

(1.8) 01 = exp (-h(t 1) 0) .  
-

Our main result (Theorem 4.1) lists conditions under which the limit dis-
A

tribution of B defined by (1.5)-(l.8) is the same as that of the estimate which

could be found by solving (1.7) when 
~~~~~~~~~ 

are known. In Section 2 we

introduce notation and assumptions. Section 3 demonstrates that

A

(1.9) 0 - 0 = 0 (N~~)

In Section 4 we sta te and prove the main result.

Remarks.

A If one assumes homoscedasticity (o~ E a), then h ( r 1) g 1. The estimate 8 be-

comes an ordinary robust regression estimate with preliminary estimate of

scale given by (1 .5)-(l .6) . Sec Maronna and Yohai (1979) for further details.

B We n o  not know if iterating (1.5)-( 1.8) wil l  lead to convergence . Further , we

do not know whether simultaneous solution of ( l .6 ) - ( l . 7 )  is possible.

~

-

~

--
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C Throughout the paper, we will use the following convention. For a real function

f on a space X, we say that x0 solves f(x) = 0 if

(1.10) If(x0) I < 2 inf If(x ) I.
x

With this convention, all our estimators will exist but need not be unique.

However, our asymptotic results hold for every appropriate sequence of esti-

mators.

D The Box and Cox (1964) transformations form an alternative method for dealing

with heteroscedasticity, as well as other deviations from the normal linear

model . Defining

~(A) 
= (YX_l)/x (A ~& 0)

= log Y (A = 0),

they postulate that for some A , Y~~ satisfies a homoscedastic normal linear

model . Their methodology is based upon an entirely different model from ours,

but a practitioner might consider using both on a given data set. Carroll

(1978) and Bickel and Doksum (1978) independently studied both Box-Cox and

robustified Box-Cox methods and concluded that variances of the estimated coef-

ficients in the linear model are often much larger when A is estimated than

when it is known. Therefore, confidence intervals and tests of hypotheses which

are constructed as if A were known and not estimated are invalid.

In contrast, we show in Section 4 that, if the errors, e., are symmetrically

distributed or ~~x) = x , then for our method, the variances of estimated coef-

ficients when 0 is estimated are similar to those when 0 is known, and confidence

intervals and tests can be validly constructed as if ~ were known.
I -

hL J
~ _ _ _ _ _ _ _ _ _ _ _ __ _ _________________________________ ~~4_ L ... ~~ ~~~~~~~~~~~~~ —~~~ —- -  ~~~~~~~~~~~~~~~~~ - T
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2. Assumptions and notations. Let i~ be a nondecreasing function from

— 
R1 to R1 which satisfies

Bi. E~p(e1) = 0,

B2. 0 < E~~(e1) = <

for some c~ > 0

P B3. E~((e1+r)(l+s)) = A( i~) r + O ( I r I ’ +

as r -* 0 and s -
~ 0 with A(~) > 0,

B4. E~
2((e1+r)(l+s)) 

- = AOP~) s + O (IrI ’~~ 
+

a s r -~ 0 and s+Owith A(~
2) > 0 ,

B5. there exists C0 such that for all 6 < 1

F - - u r n  sup E{sup~4((e1+r)(l+s)) 
—

k-’O

IrI,Ir ’I, Is I , Is ’ I � k and Ir—r ’I, I s — s ’I < k~S}

--

for both 4 = ~, and ~ = and

86. lim E(~((e1+r)(l+s)) — 4(e1)) 2 = 0
r,s-~()

for both~~~=~~~an d 4= ~~
2
.

The function h from R1 to ~~~ C1 in R~ and 
= B, satisfy

B7. u r n  (sup (IIC~H + h(t1))N
4) = 0,

N-.O i�N
N

B8. sup (N~~ ~ lI ~ . Il
2 + h(t )2) <

N i=l 1 1

89. Letting X~ be the minimum eigenvalue of

HN 
= ~~~~ h(r )

then
lim inf A = A  > 0
_ N

BlO. h is Lipschitz continuous on an interval (possibly infinite), I, such

that is in I for all i and N,
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Ir

Bll. inf inf h(r.)T 0 > -
~~

N i�N 1
and

Bl2. letting d. = 

~~ 
exp(-h(t )T 0),

N’1
~~ d .d~

’ 
= S

N -‘ 
S (positive definite).

Remark. The monotonicity of ~J is needed only to prove - consistency
A 

-

of 13 and 0.

The conditions Bl-B6 are notationally complex but widely applicable.

They clearly hold for p(x) = x2/2 (~(x) = x) if Ee 1= 0, Ee~ < ~ , where

A(~) = 1, A(~i
2) = 2Ee~ . ~f F is symmetric and ~ is odd, Bl-B6 can be yen -

fied if (i) 
~ 

is constant outside an interval (ii) iL is Lipschitz continuous

and twice boundedly differentiable except possibly at a finite number of points,

al,...,ak (iii) F is Lipschitz continuous in neighborhoods of a1,.. .,ak and

(iv) E~
2(e1), E~’(e1) and Ee1~ (e1) 4i’(e1) are all positive . Then A(~) = E~’(e1)

and A(i~
2) = 2Ee1iP(e1) i~~(e1).

For the power model (1.2), h(x) = (1, log ~x J ) 0 =  (log a,8) and BlO , Bil

hold if

(2.1) inf inf ITI > 0.
N l�i�N

Since the power model (1.2) makes little sense when t. 0, (2.1) is reasonable.

To avoid this difficulty, in Section 1 we suggested h(x) = (1, log(1+~x~)), for

which 810, 811 hold. The other example h(x) = (1,fx~) will satisfy 810, Bli

as long as the {T.} are uniformly bounded .
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3. Estimation of .~~ ..

• ~~~
- . Theorem 3.1 . Suppose Bl-B8 hold , (h-B) = O~(N

4). t~ = C~ ~~ and 0 is

- any solution (see 1.10) to

N A
(3.1) ~ {i~~ ((Y . -t . )  exp(_ ~.(t i) T 

~~~ 
- 

~~~ 
h(t ) = 0.

i=1 1

- Then

(3.2) 0 - 0 = O~ (N 4).

Proof. For 
~l in R~ , 

~2 in and

= (A 1,~~), define h1(~) = h(t.+ç~ t~, N
4),

(3.3) (A) exp{~hi(A)
TA2N
4 

+ (h (O) - h (A))TO} - 1

- . (3.4) ~~
2
~~(A) = N 4 d~ ~~ (see Bl2) •

Then let 4~~(x~y1 z) = 4~
2((x+z)(l+y)) - ~ and define the processp W

N
(t
~
) = -N~ ’~~ e1,a~~ (A) ,c42~(A) ) h (A)

Note that (3.1) can be rewritten as

4
A A

~~~~~- WN(N (~~-B). N (0-0)) = 0.

By Bi and Chebyshev’s inequality,

(3.5) WN
(O) = 0 (1),

- 
~~~

- - 

so that by our convention (1.10) ,

WN
(N
~
(
~~

_
~
), N4(0 0))  = O~(l).

- - We can therefore prove (3.2) by showing that for each M1>O , e>0, Q>0

there exists Mf 0 such that

i - ~I - - -~~~~ —----~~~~~~~~~~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ • ~~~ —- —~~——-~~
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k 
(3.6) p inf I IW N(&II > Q

IA 1PI �M 1 � i —

I I A 2 I k M 2
We will prove (3.6) by modifying the proof of Jure~kov~ ’s (1977) Lemma 5.2.

We first apply Theorem A.l of the appendix, with x. = h. (O) and

ct~
3
~ (A) = h~~(A) - h.(O). Then Bl-B8, BlO , Bll imply that the assumptions of

Theorem A.l are met with 
~~ 

1, A(~,i) = A(~
2), so that for all M>0,

sup W~(A) - WN(O) - A (~U
2)N4 ~ h(T.)c~~~(A)

~I A t k M  i=1 1 1

= 0 ( 1).

By a Taylor series expansion ,

= ~N4h(r~ ) T A2 + 

~~~~~~~~~~~ ~ 
+ o ( N 4) .

Thus , by B9 , sett ing

GN(~
) = N 4

~~ h( T~ ) (h 1(O)-h . (A )) T 0 ,

(3.7) sup I W~ (~~ ) - WN (0) - A(~
2)H~2 + GN ~ I I = o (1).

I I A II �M p

Now fix c>0, M1>0, Q>0. Use (3.5) to choose y such that

p ( J I W N(0) II > y/2) < c/2.

Define

D = sup sup I GN ~
) I (.

N HA 1II�M 1
Then D<~’ (GN depends only on A t). Define M2 by

[A(~
2)Aj12/2 - y - DJ = Q.

Using 89 and (3.7), find N0 
such that AN � A~,,/2  and

~~~{ I I ~~~;~~~I = M
2 

I I W N
(A)  - WN(O) 

- A(~P
2 )HA 2- GN ( A ) t I  <

11 A 1 11 �M 1
� 1 - c/2 (N�N 0) .

____ 
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I
-

~ If 11A 2 11 = M2, II~~ J < and N ~ N0, then with probability at least l-e,

A2WN
(A)

� -M~ 1 1 W ~ (O)I1 + A~ HA 2AOP 2 ) - M2D - M2y/2

� [AOP~) A 1~ M2/2 
- y - DIM2 = QM2.

Since 
~ 

is nondecreasing, A 2WN
(A

l
,A2

s) is a nondecreasing function of s. Thus,

I � M~ implies

~~~ 

I- A
2
W
N

(A) � A2WN (A l,M2A21 1A 2 1 ~_ l)

I f � (11A
2
11/M 2

) (M
2
A
2II A 2 II 1

W
N

(A
l
,M
2
A
2 1 1 A 2 11 1) )

F 
�

Thus, -

- p inf
I I A 1

H�M
1 h A  n— ~ Q � 1-c

1 2’’

-

- which with the Cauchy-Schwarz inequality proves (3.2). 0

I 
_ _ _

- 
4. Estimation of .~~~ The l imi ting distribution of B is a simple consequence

- of the following representation .

— Theorem 4.1. Suppose Bl to Bl2 hold and A (~) > 0. Then if B is any solu-

- 

tion (see (1.10)) to

N A
(4.1) 

~ ~P((YçC! ~~) exp(-h(t.)
T O)C. exp(_h(t.)T 0) = 0

I i=l 1 1 1 1

T ’~ 
A 

4with t. = C1 ~~~~, 
(13~ -~~) = 0~(N ), and 0 satisfying (3.2), then

A N
- [_ (4.2) N4(B- B) = N 4 ~ S d .~ (e.)(A(~’))

1 
+ 

~ 
(1).

1=1 p

- This result, strcngthcned so that the remainder is o(l) almost surely, has been

• established in the homoscedastic case by Carroll and Ruppert (1979).



.—•-••——~~~- ~~~~~~~~~~ -~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

page 11

I

Proof. For A1 and A3 in R~, A2 in and ~ = 

~~~~~~~~~ 
define

N4 4 ~
= h(T~ + C A3 N

4) ,

= exp(_hi (A) T 
~-2 N
4+ (h1

(O)_h~ (A )) T0) - 1,

4 and

= 
(2)

Define the process N

UN (A) = N~~)1 
ip( e .+c&c 1~ (s) ) (l+ c~~~ (A)) (d. ÷ct~

3
~ (A)) .

Note that (4.1) can be rewritten as

(43~ 4 A  4
A

• ) U
N

(N (B-B), N2(0-0), N (~~~-B)) = 0.

Letting g~E l,4~~(e~~r,s) = lp((e
~
+ r)(1 + s)), and A ( i~, i) = A(~) ,  the cond itions

of Theorem A.l are implied by Bi, B3, B5 to B8, Bll , and 812, so for all M>0

(4.4) sup I IU~~(~~) - UN(O) 
- A(~ ) SA

1 II = o (1).
i I A II �M p

Now by Chebyshev ’s theorem and Bl ,

UN
(O) = O

~
(l).

Therefore, if we set

= -(A(ip)S)
1 U

N
(O) ,  then

= 0 (1)

and therefore, by (4.4)

LJ(A*) = o~(l).

t I

- -~~~~~~~ ~~~~~~~~~~~~~~~~ _____________________
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I

Consequently, by (4.3) and our convention (1.10),

(4.5) UN(~~~~~
),N (

~.
O)
~ 

N4~~~-8)) = o~ (l).

By Theorem 3.1, (0-0) = O~ (N ), so we need only establish that

A 4
(4.6) (~

_
~) 

= 0 (N )p

to conclude from (4.3) and (4.4) that (4.2) holds. But by (4.5), (4.6) holds

if for each ~>0, c>0, and M
1 
there exists M2 

satisfying

(4.7) P( inf inf inf I fU~ (A) I I>n) > 1 - C.

H~1H�M2 I t 4 ~2 II�M1 II~3 It �M1

Now (4.7) follows from (4.4) in a manner quite similar to Jure~kova ’s (1977)

proof of her Lemma 5.2. 0

Corollary 4.2. If E~
2(e1) < and the assumptions of Theorem 4.1 are met,

then -

D 1N2 (B-B) + N(0 , S~ E~
2 (e 1) A(~ ) 2 )

Proof. Use (4.2) and Loeve ’s (1963, p 316) Normal Convergence Criterion

¾ A  T D T-1 2 -2
to show that N (B-B) x ÷ N(0, x S x Ei~ (e

1
) A(i~) ) for each x in R~.

Since B7, Bll and B12 show that

lim( 
~ II~~II 2 ) 1IId~II 2 

= 0,
N-t x i 1

it is easy to see that the criterion is met. U

— Recall that A(~j) = E~P’ (e1), 
for commonly used 4.

Def ine

= exp (h (~~ 8 ) T 9)

(one could use s instead of ~~
). Then when (0-0) = 0~(N 4) and

• ~~~~~~~~~~~~~ 

= 0~ (N ), 87 and BlO imply

sup = o (1).
i�N 
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Suppose for both $ = 
~J.’ 
and 4 = 4”

lim E sup{I4((1+x)(e1+y)) - $(e1)(:IxI � c and I)’I � c} = 0.
£40

Then it is easy to prove that

IN ’~~ ~~~~ 
(Y 1-~~ !~ 

- 4(e~)I = o~(l)~

and by the strong law of large numbers,

N 1 
~~ ~(e.) + E~(e.).

i=l

Moreover ,
N A N

l l N
l
~~ ~

_2 
~~~ - N

l
~~ ~~~i=1

A N
� SUp Ia~— a~1 (N~~ ~ I IC~I 1 2) = (1)

i�N i=l p

(with I IA I I equal to, say, the Euclidean norm of the matrix A),
so

1
N A 2  T~~N ~ a. C.C. ÷S.

i=l 1 i i

Therefore, E4’
2(e1) A(4’Y

2 S can be consistently estimated, and large sample

confidence ellipsoids and tests of hypotheses for B can be constructed.

5. I/11 - consistency of preliminary estimators. Since we require that our pre-

liminary estimate satisfy (1.5), we now give conditions which insure that

an M-estimate ~~ solving

i~1 
4’(Y1-ç~ ~~~ = 0

satisfy (1.5). This is not scale equivariant, but this does not affect

the limit distribution of ~~.

Bl3. 4’ is odd

I
- - -—————- ~~~~~~~~~~~~~~~~ ~~~~ ~~~~~~~ ~~~~~~~~~ ~.
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B14. 4’ ~ 
Lipschitz continuous with Lipschitz constant L

4’
815. the Radon-Nikodyn derivative 4” satisfies EOP(x(e1+y)) - 4’(xe1) -

4” (xe1) xy) � K I xy l
1
~~ for some K and a>0 and all x and y

B16. N 4(a.÷ 1 )- I~ .f ) + 0

N
Bl7. sup (N~~~ (a~+ l )lId~~I I 2) <

i.~ i=l

B18. the minimum eigenvalue, AN, of

a
~ 
E4”(a.e1) ~~~~~~~~~~

satisfies u r n  inf AN 
> 0.

Theorem 5.1. Under B13 to Bl8, (1.9) holds .

Proof. We will apply Theorem A .l with ~1(e1,r,s) = 4’(a1(e1-r))(so 4. does

not depend on s), 
~~
.= 

~~
, k.= N4JJ C ~~1 1 S  A (iP,i) = ~~~. E4’

1 (a.e1), ~~~~ 0,

and c42~ left undefined. By 813 and Bl4, (A.3) holds. By 815, for all r and r ’

I4 1(e1,r) — 4 (e1,r ’)~� K alr— r ’I

so that (A.4) and (A.5) hold. Also, (A.5) is implied by Bl5, and (A.l), (A.2),

(A.7), (A.8), and (A.9) are easily checked. Therefore, for all M>0,

N N
sup I N 4 

~ 4 ’(a . (e .-d~ A) - N4 ~ 4’(a~
e
~
)

I IA II �M i=1 j=1

+ ~~~~ a. E4’~(a.e1) d d ’
~
’ 

= O~ ( l ) .

Now (5.1) follows exactly as Jureckova ’s (1977) Lemma 5.2 , since
T A  T A

‘,
~
- c-~ ~~ 

= a1(e
~
- C1(~~-8)). 0
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APP ENDIX

The following general theorem will be used when studying ~~ , 0 and 8.
* Theorem A.1. Let g

~ 
and k

~ 
(=g~~ and kiN ) be sequences of positive constants

• such that

(A.1) lim (sup k
~
+ k~g~)) = 0

N-~ i�N-3

and
N

(A.2) sup ( ~~ k2 + k?g~) = 00

- N i=l ~

Let be a function from R3 to R
1 
satisfying

(A.3) E4~
(e1,0,0) = 0 for all i ,

(A.4) lim sup E{supI4~(e1~r~s ) — 4 (e ,r’,s’ )f :

Ir l , r’I , Is !, Is ’ I � k and Ir—r ’I , Is— s ’ I � k6} � C06g.

for some C0 and all 6<1 and all i,

(A.5) sup g~
’ E(4(e1,r,s) - 4(e1,0,0) - A(4,i)r) = 0 (IrI ’~~ + I s I 1

~~i�N

for positive constants A (4,i) and ci>0, and

(A.6) lim sup E(4.(e1,r,s ) - 4~(e1~O~0))
2 

= 0.
r,s+0 i�N

Let czc~ ’, c~
2), and be functions from Rm to R1, R1 and R~, respectively,

such that

(A.7) a~
’
~(0) = 0, and

(A.8) II a~~~ - c42~(y)II � k~ i I x_~jI

for all x and y in Rm , i=l , .. . ,N, and 2.=l , 2 , or 3. Let 
~~ 

(
~~ iN) be elements

of R~ satisfying

(A. 9) N 4II x~ I I � k. .

~ : 
~

-~~~~~~~
--

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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F-or ~ C R , define the process

= N4~~ 4~ (e., c4~~ (A ) ,  2
~ (A) ) (x~+c4

3
~ (A)) .

~j ~; 
“ Then , for all M>0

I (A . lO) 
II A I~

<M 
I I U N(A) - U

N
(O) - N 4Z A(4,i)c4~

’(A)x i II =

Proof of Theorem A.1. Fix M>0. We will show that

I 

(A.11) E(UN
(A) - U

N
(O) ) = N 4~~ A(4,i)c4fl (A) x.+o~ (l)

-~ and

~ I 
(A. l2) UN(A) - - E(U

N
(A) - U

N
(O))  = 0 ( 1)

for each fixed A, and that there exists K depending upon M but not 6 such

- 

that for all 6>0 and all N

(A.13) E sup {IlU~(A) - UN(A)II . I I A I I �  M , II A * II � M , II A ~A * II � 6) � K6.

- Since for any 6, we can cover a ball of radius M in R
m with a finite number

of balls of radius 6, (A.ll), (A.12), and (A.13) prove that for each 6>0,
• N

lim p sup II U N(A) - UN(2~ 
- N4 ~ A(4,i)~~~~(A)x1II � K6~ = 1,

~~~~~ M i= 1 J
which proves the theorem.

To prove (A.ll), note that by (A.3),

N 4 
~ 

E( tJN (A) - UN(0)) 
=

N~~~~ E(4.(e., ‘~ (A) , ~~
2
~ (A) ) - $~

(e ., O ,O ) ) (
~~

+ ~~
3
~ (A)) ,

by (A.l) and (A.8).

(A. l4) IIx~
+ c43~( A ) I I  � 2 II ~~II for all large N , and by (A.5) ,

- 

E(41(e1,c4~~(A) , ci~
2
~ (A) ) - $1(e1,O ,0)) ~

+ 0(g~k1 II A II )1’~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
_~: ~~~~~~~ I
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.1

uniformly in i. Therefore

- UN (0)) = N4Z A(~1i)a!~~(~)x.

+ 0(N 4 
~ (g~k .) F~~ 11 11 ~i=l 1

and by (A.2) and (A.9),

N4X (g1k~)
’~~J I x ~ I j � g.k.~ =

� (g1~~)~ ~~~~~~~~~~~~~~ = o(l).

Thus (A.l) holds .

Next, by (A.14) we have that for N large

Var(EJN(A) - U
N

(O) )  �

(2W~~~~g~ I~ x. II
2
) sup g~

2E($~(e1,a~~~(A)) ~~
2
~(A)) - 4.(e1,0,0))

2
.

It follows from (A.4), (A.5), (A.7), and (A.8) that

sup gT2 E(4.(e., ‘~ (A) , ct~
2
~(A)) - 41(e.,0,0))

2 
= o(l).

i�N i i  1

Therefore, (A.l 2) is proved by applying (A .2) .  Finally,  by (A. 14) the RHS of

(A.13) is less th an or equal to
N

2N 4~~ II
~•~

1 I E sup{I$i
(e., cI

~
’
~
(A), a~

2
~ (A) ) -

•i(e:,~~~~~*), ~~
2
~~~* I :  II~ I I � M, II A II � M, I IA A * IIS 6)

• 
which by (A.2) , (A .4) to (A.9) , and the Cauchy-Schwarz inequality does not exceed

SUP 2(~~~(g~k~)
2
)4 c06 = 2C04 6.

Therefore (A.13) is verified. U

_ 
- - ~~~~~~~- --~~~~~ -- -•~~~~~~~~~ -
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